
Meltdown and Spectre Samples
Written in Assembly

U. Plonus
u.plonus@gmail.com

April 29, 2019

mailto:u.plonus@gmail.com

Copyright (C) 2018 U. Plonus.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

2

Contents
1 Introduction 5

1.1 Overview . 5
1.2 Conventions . 5

1.2.1 Introduction . 5
1.2.2 Data Sections . 5

1.3 Nasm . 5
1.4 Speculative Execution . 6

2 Cache Access Timing 7
2.1 Introduction . 7
2.2 Detect Cache Access Time . 7

2.2.1 High Resolution Timer . 7
2.2.2 Cache Access Time Routine . 7

2.3 Measure Cache Access Time . 8
2.3.1 Setup . 8
2.3.2 Measure Time . 9

2.4 Read Byte via Cache Access Time . 12
2.4.1 Introduction . 12
2.4.2 Clear Cache for Measurement . 12
2.4.3 Indexed Array Access . 13
2.4.4 Read a Byte from the Cache . 14
2.4.5 The Whole Program to Read a Byte from Cache 16
2.4.6 Improve Cache Access Time Analysis 19

2.5 Read Array via Cache Access Time . 26
2.5.1 Introduction . 26
2.5.2 Setup . 26

3 Meltdown 39
3.1 Introduction . 39
3.2 Signals . 39

3.2.1 Detecting Signals . 39
3.2.2 Handling Signals . 39

4 Utilities 41
4.1 Introduction . 41
4.2 Common Chunks . 41

4.2.1 Exit Program . 41

3

Contents

4.2.2 Stack Frame . 41
4.3 Random Number Generator . 42
4.4 Printing Strings . 43

4.4.1 Printing Strings with Length . 43
4.4.2 Printing C-Strings . 43

4.5 Printing Numbers . 44
4.5.1 Printing a Decimal 64bit Unsigned Integer 44
4.5.2 Printing a Hexadecimal 8bit Integer 47

A Index 49

B Glossary 51

C Acronyms 53

D x86-Instructions 55

E Code Chunks 57

F License 59
F.1 GNU Free Documentation License . 59
F.2 Code License . 68

F.2.1 GNU GENERAL PUBLIC LICENSE 68
F.2.2 Code Chunk of GPL . 82

4

1 Introduction

1.1 Overview
TBD

1.2 Conventions
1.2.1 Introduction
In this section we define some convention that are specific for this document.

1.2.2 Data Sections
The data is divided into three parts: read-only data, initialized data and uninitialized
data. Code chunks with this type of data will all have defined sufficies.

Definition 1 Read-only data is data that is not modified during program execution. The
suffix for read-only data is -rodata.

Definition 2 Initialized data is data that is changeable during program execution. The
data is already initialized with data when the program starts. The suffix for initialized
data is -idata.

Definition 3 Uninitialized data is data that is changeable during program execution.
The data is not initialized. The suffix for uninitialized data is -udata.

1.3 Nasm
TBD

⟨preamble 5⟩≡ (12 19 22a 25 36)
bits 64

⟨license 82⟩

global _start
pspower equ 12
pagesize equ 1 << pspower

Defines:

5

1 Introduction

_start, used in chunks 9a, 14b, 22b, and 26b.
pagesize, used in chunks 8b, 9c, 13, 14, 17a, 23c, 26a, 28f, 34c, and 35b.
pspower, never used.

1.4 Speculative Execution
All 3 attacks (Spectre-V1, Spectre-V2 and Meltdown) base on speculative execution and
cache timing.

6

2 Cache Access Timing

2.1 Introduction
TBD

2.2 Detect Cache Access Time
2.2.1 High Resolution Timer
First we need a high resolution timer to determine the cache access time. For this we use
the time stamp counter. The time stamp counter is monotonically incrementing. When
reading the time stamp counter (with rdtsc rdtsc) the result is delivered back in the registers
EDX and EAX forming a 64bit value. The time stamp counter is not an absolute value
but a relative value, meaning that you cannot (easily) calculate from the time stamp
counter to some time units (e.g. ns). But this is no problem as we only want to measure
relative times.
To retrieve a 64bit value for the time we shift the value in EDX 32 bits to the left and

add the value of EAX to this.

⟨tsc-64bit 7⟩≡ (8a)
rdtsc
shl RDX,32
add RAX,RDX

2.2.2 Cache Access Time Routine
Next we need a routine that calculates the cache access time for us.
First we have to ensure in this routine that the speculative execution of the processor

does not interfere with our time measurement. For this we use the instruction lfence
lfencewhich ensures that all previous reads are done before executing the next instructions.

Next we access a memory location with the address RDI by loading this into RCX and
measure the time before and after the access.
The command lfence before reading the time stamp counter is needed because we

have to ensure that all reads before the time measurements are done.
At last we calculate the relative time needed to access the memory location. In theory

we should see a difference whether the memory location is accessed before or not.

7

2 Cache Access Timing

Parameters

RDI the address of the memory which is loaded either from the cache or from
memory

Return

RAX the relative time of the cache access

⟨calculate-cache-access-time 8a⟩≡ (12 19 22a 25 36)
_calccachetime:

lfence
⟨tsc-64bit 7⟩

mov R8,RAX
mov RCX,[RDI]
lfence

⟨tsc-64bit 7⟩
sub RAX,R8
ret

Defines:
_calccachetime, used in chunks 10b, 11b, and 15c.

2.3 Measure Cache Access Time
2.3.1 Setup
To measure the cache timing we create a standalone program that shows us the time for
a cached and for an uncached memory access.

First we need some area in memory with data which we can later read from. This
data area goes into the area .bss which contains uninitialized data. We align the data
at a page boundary and reserve one pages for our data.

⟨data-udata 8b⟩≡ (12 19 22a 25 36)
alignb pagesize
data: resb pagesize

Defines:
data, used in chunks 9, 11b, 14c, 17b, 18b, 23c, 24b, 28f, and 34c.

Uses pagesize 5.

From time to time we need a small scratch area so we define an area with 32 bytes.

⟨scratch-udata 8c⟩≡ (12 19 22a 25 36)
scratch: resb 32

Defines:
scratch, used in chunks 10f, 11d, 17, 18, 24b, 30b, 32, and 35b.

8

2.3 Measure Cache Access Time

The program begins with the label _start.

⟨cachetiming-program 9a⟩≡ (12) 9f ▷
_start:

Uses _start 5.

Now we start with initialising the data area with some random data. For this we load
RDI with the address of the data area.

⟨init-random-data 9b⟩≡ (9f 14b 22b 26b) 9c ▷
mov RDI,data

Uses data 8b.

Next we load the number of bytes to fill into RSI. For this we load the pagesize into
RSI.

⟨init-random-data 9b⟩+≡ (9f 14b 22b 26b) ◁ 9b 9d ▷

mov RSI,pagesize
Uses pagesize 5.

At last we load EDX with some random seed. For this we use rdtsc and only use the
lower 32 bit of the value.

⟨init-random-data 9b⟩+≡ (9f 14b 22b 26b) ◁ 9c 9e ▷
rdtsc
mov EDX,EAX

Now we call _xorshift to fill the data area.

⟨init-random-data 9b⟩+≡ (9f 14b 22b 26b) ◁ 9d
call _xorshift

Uses _xorshift 42a.

Now we add this data initialization to our program.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 9a 9g ▷
⟨init-random-data 9b⟩

2.3.2 Measure Time
Now that we have setup our data area we can now cache data from the first page by
loading it into a register which also loads this into the cache.
For this we load RDI with the address of the data area.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 9f 10a ▷
mov RDI,data

Uses data 8b.

9

2 Cache Access Timing

Before we load the data into a register now we will clear the cache lines with the given
address. For this we use the instruction clflushclflush . After flushing the cache line we ensure
(with lfence) that all reads from memory are finished before we load the data into a
register again (and filling the cache).

⟨cachetiming-program 9a⟩+≡ (12) ◁ 9g 10b ▷

clflush [RDI]
lfence
mov RCX,[RDI]

Now we can determine the time that is needed to load this data once again. We do
not need to load RDI again because it has not changed.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 10a 10e ▷
call _calccachetime

Uses _calccachetime 8a.

Now we have the relative cache access time in register RAX. We store this value to the
stack and print out an explaining text.
For this we define the text to print.

⟨cachetiming-rodata 10c⟩≡ (12) 11c ▷
⟨common-rodata 10d⟩

scached: db "Cached Access Time: ",0x00
Defines:

scached, used in chunk 10e.

Additionally we define some helper data, in this case line feed (LF).

⟨common-rodata 10d⟩≡ (10c 19 22a 25 36)
slf: db 0x0a

Defines:
slf, used in chunks 11, 17, 18, 24b, 33a, and 35b.

Now we can store RAX and print the text.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 10b 10f ▷
push RAX
mov RDI,scached
call _print

Uses _print 44a and scached 10c.

We now restore the value and print the measured time to stdout.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 10e 11a ▷
pop RDI
mov RSI,scratch
call _printdu64bit

Uses _printdu64bit 45a and scratch 8c.

10

2.3 Measure Cache Access Time

At last we append a LF to the output.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 10f 11b ▷

mov RSI,slf
mov RDI,1
call _nprint

Uses _nprint 43b and slf 10d.

Now we do the same with an uncached value. The difference is that we do not load
the value before.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 11a 11d ▷

mov RDI,data
clflush [RDI]
lfence
call _calccachetime

Uses _calccachetime 8a and data 8b.

Now we have the time of the uncached data access in RAX and can print it out with
some explaining text.

⟨cachetiming-rodata 10c⟩+≡ (12) ◁ 10c
suncached: db "Uncached Access Time: ",0x00

Defines:
suncached, used in chunk 11d.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 11b 11e ▷
push RAX
mov RDI,suncached
call _print
pop RDI
mov RSI,scratch
call _printdu64bit
mov RSI,slf
mov RDI,1
call _nprint

Uses _nprint 43b, _print 44a, _printdu64bit 45a, scratch 8c, slf 10d, and suncached 11c.

At last we exit the program.

⟨cachetiming-program 9a⟩+≡ (12) ◁ 11d
⟨exitProgram 41b⟩

11

2 Cache Access Timing

Now we can put everything together and have our cachetimingcachetiming program that we can
now execute.

⟨cachetiming.asm 12⟩≡
⟨preamble 5⟩

section .rodata
⟨cachetiming-rodata 10c⟩

section .bss
⟨data-udata 8b⟩
⟨scratch-udata 8c⟩

section .text
⟨cachetiming-program 9a⟩

⟨calculate-cache-access-time 8a⟩

⟨xorshift-prng 42a⟩

⟨utilities 41a⟩

The program source is placed in asm/. With make in the folder we can create an
executable which is moved to bin/. There we can execute this program.

$ bin/cachetiming
Cached Access Time: 72
Uncached Access Time: 372
$

2.4 Read Byte via Cache Access Time
2.4.1 Introduction
We have seen that we can determine if the content of a memory address is in the cache
or not (see 2.3 Measure Cache Access Time).

So next we try to read a single byte from the memory by only detecting the cache
access time.

2.4.2 Clear Cache for Measurement
Before we can determine the cache access times we need to clear the cache. We define a
subroutine for this.

12

2.4 Read Byte via Cache Access Time

Parameters

RDI the address of the probe memory

RSI the step size in the probe memory

⟨clearcache 13a⟩≡ (19 22a 25 36)
_clearcache:

mov RCX,256
cld

.nextflush:
clflush [RDI]
add RDI,RSI
loop .nextflush
lfence
ret

Defines:
_clearcache, used in chunks 13b, 23a, and 27c.

Now we add this to our program.

⟨cachereadbyte-program 13b⟩≡ (19 22a) 14b ▷

mov RDI,probe
mov RSI,pagesize
call _clearcache

Uses _clearcache 13a, pagesize 5, and probe 13c.

2.4.3 Indexed Array Access
To read the value of a byte via the cache we use the byte to index into a probe array
and then determine the cache access times of this probe array.
For this we will first create a probe array.

⟨probe-udata 13c⟩≡ (19 22a 25 36)
alignb pagesize
probe times 256 resb pagesize

Defines:
probe, used in chunks 13, 14, 17a, 23c, and 28f.

Uses pagesize 5.

13

2 Cache Access Timing

Next we will fill this probe array with some random data (similar to the chunks for
data 9b, 9c, 9d and 9e).

⟨init-random-probe 14a⟩≡ (14b 22b 26b)
mov RDI,probe
mov RSI,pagesize
shl RSI,8
rdtsc
mov EDX,EAX
call _xorshift

Uses _xorshift 42a, pagesize 5, and probe 13c.

Now we add the initialization of the data and probe area to the program.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 13b 14c ▷
_start:
⟨init-random-data 9b⟩
⟨init-random-probe 14a⟩

Uses _start 5.

Now we can read a byte from data into AL.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 14b 14d ▷

mov RDI,data
xor RAX,RAX
mov AL,[RDI]

Uses data 8b.

We use the value in RAX to access the probe array.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 14c 17a ▷
mov RDX,pagesize
mul RDX
mov RSI,probe
mov AL,[RSI+RAX]

Uses pagesize 5 and probe 13c.

Now we read the datum back via the cache access times. For this we create subroutines.

2.4.4 Read a Byte from the Cache
First we create a subroutine to read the cache access timings for the probe area.

Parameters

RDI the address of the probe memory

RSI the step size in the probe memory

14

2.4 Read Byte via Cache Access Time

RDX an area to keep the detected cache access times (256 * 8 bytes)

⟨readcachetiming 15a⟩≡ (19 22a 25 36) 15b ▷

_readcachetiming:
⟨enterstackframe 41c⟩

Defines:
_readcachetiming, used in chunks 17a, 23c, and 28a.

Now we create space on the stack to keep the variables. Next we save the parameters
to the stack space created.
⟨readcachetiming 15a⟩+≡ (19 22a 25 36) ◁ 15a 15c ▷

sub RSP,32
mov [RBP-8],RDI
mov [RBP-16],RSI
mov [RBP-24],RDX

Now we can start detecting the cache access times.
⟨readcachetiming 15a⟩+≡ (19 22a 25 36) ◁ 15b 15d ▷

mov RCX,256
.nextcacheread:

mov [RBP-32],RCX
call _calccachetime
mov RDX,[RBP-24]
mov [RDX],RAX
add RDX,8
mov [RBP-24],RDX
mov RDI,[RBP-8]
add RDI,[RBP-16]
mov [RBP-8],RDI
mov RCX,[RBP-32]
loop .nextcacheread

Uses _calccachetime 8a.

At the end we clean up the stack again and return to the caller.
⟨readcachetiming 15a⟩+≡ (19 22a 25 36) ◁ 15c
⟨leavestackframe 41d⟩

ret

After we determined all cache access times we can now find the lowest access time and
with this the possible byte. We return two results from this subroutine, in AL the byte
with the lowest cache access time and in AH the count of the lowest cache access time.
Only if AH is 1 then the value in AL is valid.

Parameters

RDI the area with the detected cache access times (256 * 8 bytes)

15

2 Cache Access Timing

Return
AL the read byte (in AL) with the lowest cache access time

AH the number of bytes read with the lowest cache access time

⟨analyzecachemintiming 16a⟩≡ (19 36)
_analyzecachetiming:

push RDI
mov R8,0xffffffffffffffff
xor R9,R9
xor RCX,RCX
mov RSI,RDI

.nexttry:
lodsq
cmp RAX,R8
ja .nohit
mov R8,RAX
mov R9,RCX

.nohit:
inc RCX
cmp RCX,256
jb .nexttry
xor RCX,RCX
pop RSI

.nextcount:
lodsq
cmp RAX,R8
ja .nomin
inc R10

.nomin:
inc RCX
cmp RCX,256
jb .nextcount
mov RAX,R10
shl RAX,8
mov AL,R9b
ret

2.4.5 The Whole Program to Read a Byte from Cache
Before we can start using our new subroutine _readcachetiming we need to define a
data area for the cache access times.
⟨timings-udata 16b⟩≡ (19 22a 25 36)

timings resq 256

16

2.4 Read Byte via Cache Access Time

Now we have all subroutines together we now can start implementing the main pro-
gram and output the byte read.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 14d 17c ▷
mov RDI,probe
mov RSI,pagesize
mov RDX,timings
call _readcachetiming
mov RDI,timings
call _analyzecachetiming

Uses _readcachetiming 15a, pagesize 5, and probe 13c.

Now we define a string to output for the read byte and the expected byte.

⟨cachereadbyte-rodata 17b⟩≡ (19 22a 25)
sreadbyte: db "Byte read via cache access: ",0x00
ssountbyte: db "Count of bytes with min timing: ",0x00
sexpectedbyte: db "Expected byte from data: ",0x00

Uses data 8b.

We save the value from RAX (only AL is interesting to us) to the stack and print out
the text.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 17a 17d ▷

push RAX
mov RDI,sreadbyte
call _print

Uses _print 44a.

Now we print the read byte and end the line with a LF.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 17c 18a ▷
pop RDI
push RDI
and RDI,0xff
mov RSI,scratch
call _printh8bit
mov RDI,1
mov RSI,slf
call _nprint

Uses _nprint 43b, _printh8bit 47b, scratch 8c, and slf 10d.

17

2 Cache Access Timing

Next we print (for information) the number of bytes read with the minimum cache
access timing.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 17d 18b ▷

mov RDI,ssountbyte
call _print
pop RDI
shr RDI,8
and RDI,0xff
mov RSI,scratch
call _printdu64bit
mov RDI,1
mov RSI,slf
call _nprint

Uses _nprint 43b, _print 44a, _printdu64bit 45a, scratch 8c, and slf 10d.

Now we read the byte from the original data array and print this also.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 18a 18c ▷
mov RDI,sexpectedbyte
call _print
mov RSI,data
xor RAX,RAX
mov AL,[RSI]
mov RDI,RAX
mov RSI,scratch
call _printh8bit
mov RDI,1
mov RSI,slf
call _nprint

Uses _nprint 43b, _print 44a, _printh8bit 47b, data 8b, scratch 8c, and slf 10d.

At last we exit the program.

⟨cachereadbyte-program 13b⟩+≡ (19 22a) ◁ 18b
⟨exitProgram 41b⟩

18

2.4 Read Byte via Cache Access Time

Now we put all together to get the program cachereadbyte cachereadbytethat we can execute.

⟨cachereadbyte.asm 19⟩≡
⟨preamble 5⟩

section .rodata
⟨common-rodata 10d⟩
⟨cachereadbyte-rodata 17b⟩

section .bss
⟨data-udata 8b⟩
⟨probe-udata 13c⟩
⟨scratch-udata 8c⟩
⟨timings-udata 16b⟩

section .text
⟨cachereadbyte-program 13b⟩

⟨clearcache 13a⟩

⟨calculate-cache-access-time 8a⟩

⟨readcachetiming 15a⟩

⟨analyzecachemintiming 16a⟩

⟨xorshift-prng 42a⟩

⟨utilities 41a⟩

2.4.6 Improve Cache Access Time Analysis
As we can see – when running the program cachereadbyte – the result is not always as
clear as it could be. Simply getting the lowest cache access time seems not to be enough.
Sample outputs of the program are

$ bin/cachereadbyte
Byte read via cache access: 2b
Count of bytes with min timing: 1
Expected byte from data: 2b
$ bin/cachereadbyte
Byte read via cache access: ff
Count of bytes with min timing: 11
Expected byte from data: b3

19

2 Cache Access Timing

$ bin/cachereadbyte
Byte read via cache access: 2f
Count of bytes with min timing: 1
Expected byte from data: 87
$

So we have to improve our cache time detection routine. We will change the imple-
mentation of the chunk 16a to define a thrshold that is a little bit above the min access
time and run the cache detection routine multiple times if no clear result is returned.
First start with the subrotuine to analyze the cache access timing. We define a thresh-

old 25 % above the minimum cache access time.
First we search for the minimum cache access time.

Parameters

RDI the area with the detected cache access times (256 * 8 bytes)

Return

AL the first byte (in AL) with a cache access time below the threshold

AH the number of bytes read with a cache access time below the threshold

⟨analyzecachesimpthrestiming 20a⟩≡ (22a 25) 20b ▷

_analyzecachetiming:
push RDI
mov R8,0xffffffffffffffff
xor RCX,RCX
mov RSI,RDI

.nextmin:
lodsq
cmp RAX,R8
ja .nonewmin
mov R8,RAX

.nonewmin:
inc RCX
cmp RCX,256
jb .nextmin

Now we have the minimum cache access time in R8. Next we will add 1
4 to this to

have our threshold.

⟨analyzecachesimpthrestiming 20a⟩+≡ (22a 25) ◁ 20a 21 ▷
mov RAX,R8
shr RAX,4
add R8,RAX

20

2.4 Read Byte via Cache Access Time

Now we scan the cache access times a second time and take all values below the
threshold into account.

⟨analyzecachesimpthrestiming 20a⟩+≡ (22a 25) ◁ 20b
pop RSI
xor RCX,RCX
xor R9,R9

.nextbyte:
lodsq
cmp RAX,R8
ja .nonewbyte
inc R9
mov R10,RCX

.nonewbyte:
inc RCX
cmp RCX,256
jb .nextbyte
mov RAX,R9
shl RAX,8
mov AL,R10b
ret

21

2 Cache Access Timing

Now we put all together to get the program cachereadbyte2cachereadbyte2 that we can execute.

⟨cachereadbyte2.asm 22a⟩≡
⟨preamble 5⟩

section .rodata
⟨common-rodata 10d⟩
⟨cachereadbyte-rodata 17b⟩

section .bss
⟨data-udata 8b⟩
⟨probe-udata 13c⟩
⟨scratch-udata 8c⟩
⟨timings-udata 16b⟩

section .text
⟨cachereadbyte-program 13b⟩

⟨clearcache 13a⟩

⟨calculate-cache-access-time 8a⟩

⟨readcachetiming 15a⟩

⟨analyzecachesimpthrestiming 20a⟩

⟨xorshift-prng 42a⟩

⟨utilities 41a⟩

Now when we only find a single hit then the possibility that the byte from the cache
timing is the original byte is much higher.

Next we will create a program that tries to read the value from the cache until we
have a single result.

First we initialize our data and probe areas.

⟨cachereadbyte3-program 22b⟩≡ (25) 23c ▷
_start:
⟨init-random-data 9b⟩
⟨init-random-probe 14a⟩

Uses _start 5.

Next we create a subroutine that clears the cache and reads in a byte via the probe
array.

22

2.4 Read Byte via Cache Access Time

Parameters

RDI the address of the byte to read

RSI the address of the probe memory

RDX the step size in the probe memory

⟨readbyte2cache 23a⟩≡ (25) 23b ▷

_readbyte2cache:
push RDI
push RSI
push RDX
mov RDI,RSI
mov RSI,RDX
call _clearcache

Defines:
_readbyte2cache, used in chunk 23c.

Uses _clearcache 13a.

Next we can add the read of the byte and caching the data from the probe array.
⟨readbyte2cache 23a⟩+≡ (25) ◁ 23a

pop RDX
pop RSI
pop RDI
xor RAX,RAX
mov AL,[RDI]
mul RDX
mov AL,[RSI+RAX]
ret

Now we add the call to this subroutine to our program and determine the byte by
analyzing the cache access times.
⟨cachereadbyte3-program 22b⟩+≡ (25) ◁ 22b 24a ▷

.startreadcache:
mov RDI,data
mov RSI,probe
mov RDX,pagesize
call _readbyte2cache
mov RDI,probe
mov RSI,pagesize
mov RDX,timings
call _readcachetiming
mov RDI,timings
call _analyzecachetiming

Uses _readbyte2cache 23a, _readcachetiming 15a, data 8b, pagesize 5, and probe 13c.

23

2 Cache Access Timing

Now we check if the read byte was a single byte, else we will do this again.

⟨cachereadbyte3-program 22b⟩+≡ (25) ◁ 23c 24b ▷

cmp AH,1
ja .startreadcache

Now we print out our result.

⟨cachereadbyte3-program 22b⟩+≡ (25) ◁ 24a
push RAX
mov RDI,sreadbyte
call _print
pop RDI
and RDI,0xff
mov RSI,scratch
call _printh8bit
mov RDI,1
mov RSI,slf
call _nprint
mov RDI,sexpectedbyte
call _print
mov RSI,data
xor RAX,RAX
mov AL,[RSI]
mov RDI,RAX
mov RSI,scratch
call _printh8bit
mov RDI,1
mov RSI,slf
call _nprint

⟨exitProgram 41b⟩
Uses _nprint 43b, _print 44a, _printh8bit 47b, data 8b, scratch 8c, and slf 10d.

24

2.4 Read Byte via Cache Access Time

Now we can put everything together to get our program cachereadbyte3.asm cachereadbyte3.

⟨cachereadbyte3.asm 25⟩≡
⟨preamble 5⟩

section .rodata
⟨common-rodata 10d⟩
⟨cachereadbyte-rodata 17b⟩

section .bss
⟨data-udata 8b⟩
⟨probe-udata 13c⟩
⟨scratch-udata 8c⟩
⟨timings-udata 16b⟩

section .text
⟨cachereadbyte3-program 22b⟩

⟨readbyte2cache 23a⟩

⟨clearcache 13a⟩

⟨calculate-cache-access-time 8a⟩

⟨readcachetiming 15a⟩

⟨analyzecachesimpthrestiming 20a⟩

⟨xorshift-prng 42a⟩

⟨utilities 41a⟩

25

2 Cache Access Timing

Even if this program is not perfect because it is not reliable all the time it is reliable
enough to demonstrate the next steps.

2.5 Read Array via Cache Access Time
2.5.1 Introduction
Now we have read a byte via the cache access times. Now it is time to read a complete
memory area.

2.5.2 Setup
For this we use the data defined before and read in the complete area. For this we need
additionally a memory area that holds the read data.

⟨readback-udata 26a⟩≡ (36)
alignb pagesize
readbackdata resb pagesize

Defines:
readbackdata, used in chunks 28f and 34c.

Uses pagesize 5.

First we initialize the data and probe areas in our program with some random data.

⟨cacheread-program 26b⟩≡ (36) 28f ▷
_start:
⟨init-random-data 9b⟩
⟨init-random-probe 14a⟩

Uses _start 5.

Next we will define a subroutine that reads the data area and writes the results of
the cache read into readbackdata.

Parameters

RDI the address of the data memory

RSI the size of the data memory

RDX the address of the probe memory

RCX the step size in the probe memory (the probe area needs to be at least
256 * RCX bytes in size)

R8 the address of the readback area (must be at least the same size as the data
area)

R9 the address of the the area to keep the timing data (at least 256 * 8 bytes)

26

2.5 Read Array via Cache Access Time

⟨readarea 27a⟩≡ (36) 27b ▷

_readarea:
Defines:

_readarea, used in chunk 28f.

Now we create some place on the stack and store the parameters on it. We reserve an
extra place at [RBP-56] for a counter into the data memory.

⟨readarea 27a⟩+≡ (36) ◁ 27a 27c ▷
⟨enterstackframe 41c⟩

sub RSP,56
mov [RBP-8],RDI
mov [RBP-16],RSI
mov [RBP-24],RDX
mov [RBP-32],RCX
mov [RBP-40],R8
mov [RBP-48],R9
xor RAX,RAX
mov [RBP-56],RAX

First we have to clear the cache before we can measure any cache access times.

⟨readarea 27a⟩+≡ (36) ◁ 27b 27d ▷

.startread:
mov RDI,[RBP-24]
mov RSI,[RBP-32]
call _clearcache

Uses _clearcache 13a.

Now we can load the byte from the memory and cache the according value from the
probe memory.

⟨readarea 27a⟩+≡ (36) ◁ 27c 28a ▷
mov RSI,[RBP-8]
add RSI,[RBP-56]
xor RAX,RAX
mov AL,[RSI]
mov RDX,[RBP-32]
mul RDX
mov RSI,[RBP-24]
mov AL,[RSI+RAX]

27

2 Cache Access Timing

Now that we have filled our cache we can determine the cache access times.
⟨readarea 27a⟩+≡ (36) ◁ 27d 28b ▷

mov RDI,[RBP-24]
mov RSI,[RBP-32]
mov RDX,[RBP-48]
call _readcachetiming

Uses _readcachetiming 15a.

Now we can analyze the cache access times.
⟨readarea 27a⟩+≡ (36) ◁ 28a 28c ▷

mov RDI,[RBP-48]
call _analyzecachetiming

If we have more than 1 hit then we retry the reading of the byte.
⟨readarea 27a⟩+≡ (36) ◁ 28b 28d ▷

cmp AH,1
ja .startread

Now that we found a byte we store it in the resulting memory area.
⟨readarea 27a⟩+≡ (36) ◁ 28c 28e ▷

mov RDI,[RBP-40]
mov RCX,[RBP-56]
add RDI,RCX
mov [RDI],AL
inc RCX
mov [RBP-56],RCX
cmp RCX,[RBP-16]
jb .startread

Now we clean up the stack frame and return to the caller.
⟨readarea 27a⟩+≡ (36) ◁ 28d
⟨leavestackframe 41d⟩

ret

Now we can add this to our program and read the area.
⟨cacheread-program 26b⟩+≡ (36) ◁ 26b 34c ▷

mov RDI,data
mov RSI,pagesize
mov RDX,probe
mov RCX,pagesize
mov R8,readbackdata
mov R9,timings
call _readarea

Uses _readarea 27a, data 8b, pagesize 5, probe 13c, and readbackdata 26a.

28

2.5 Read Array via Cache Access Time

Now we want to display the results. This means we need a routine that displays the
original data and the readbackdata side by side. Additionally we want to highlight the
value from the readbackdata if it differs from the original data.
So start with defining some highlighting and some usefull helper strings.

⟨cacheread-rodata 29a⟩≡ (36) 35a ▷
sbgred: db 0x1b,"[1;41m",0x00
sresetstyle: db 0x1b,"[0m",0x00
sseparator: db "- ",0x00
sblank: db " "
semptybyte: db " ",0x00

Defines:
sbgred, used in chunk 32.
sblank, used in chunks 30b and 32.
semptybyte, used in chunk 31a.
sresetstyle, used in chunks 32 and 33a.
sseparator, used in chunk 31b.

Next we define a subroutine which prints out up to 16 bytes each side by side on the
screen. If two bytes in the arrays are different then the value at the right side (from the
second array) will be printed with red background. The routine should also return the
number of values that are different in both areas.

Parameters

RDI the address of the first array

RSI the address of the second array

RDX number of bytes to print (up to 16). If the value is above 16 then only 16
values are printed

Return

RAX number of bytes that differ between both memory areas

⟨print-comparision16 29b⟩≡ (36) 30a ▷
_printcompare16:

Defines:
_printcompare16, used in chunk 34a.

29

2 Cache Access Timing

At the start of the subroutine we prepare a stack frame for further operations as
we will need to save and restore the registers RDI, RSI, RDX and RCX multiple times.
Additionally we store R12 and R13 to the stack to use this registers as scratch registers.

⟨print-comparision16 29b⟩+≡ (36) ◁ 29b 30b ▷

⟨enterstackframe 41c⟩
sub RSP,32
mov [RBP-8],RDI
mov [RBP-16],RSI
cmp RDX,0x10
jb .valueok
mov RDX,0x10

.valueok:
mov [RBP-24],RDX
push R12
push R13
xor R13,R13

Next we can start and handle the ”left” side of the output. We output up to 16 bytes
and then continue at .leftbytesdone (31a).

⟨print-comparision16 29b⟩+≡ (36) ◁ 30a 31a ▷
xor RCX,RCX

.nextbyteleft:
cmp RCX,RDX
mov [RBP-32],RCX
jae .leftbytesdone
mov AL,[RDI+RCX]
xor AH,AH
mov DI,AX
mov RSI,scratch
call _printh8bit
mov RDI,1
mov RSI,sblank
call _nprint
mov RDI,[RBP-8]
mov RDX,[RBP-24]
mov RCX,[RBP-32]
inc RCX
jmp .nextbyteleft

.leftbytesdone:
Uses _nprint 43b, _printh8bit 47b, sblank 29a, and scratch 8c.

30

2.5 Read Array via Cache Access Time

Now we fill up the space so that the space of 16 bytes is occupied.

⟨print-comparision16 29b⟩+≡ (36) ◁ 30b 31b ▷

.leftemptybyte:
cmp RCX,0x10
jae .leftdone
mov RDI,semptybyte
call _print
inc RCX
jmp .leftemptybyte

.leftdone:
Uses _print 44a and semptybyte 29a.

Next we print out the separator between the two compare block.

⟨print-comparision16 29b⟩+≡ (36) ◁ 31a 31c ▷
mov RDI,sseparator
call _print

Uses _print 44a and sseparator 29a.

To print the second half (for comparision) we restore the values of the parameters
first.

⟨print-comparision16 29b⟩+≡ (36) ◁ 31b 32 ▷
mov RDI,[RBP-8]
mov RSI,[RBP-16]
mov RDX,[RBP-24]

31

2 Cache Access Timing

Now we compare each byte with the original value first and then print it out. If the
value differs from the original value we additionally mark the byte.

⟨print-comparision16 29b⟩+≡ (36) ◁ 31c 33a ▷
xor RCX,RCX

.nextbyteright:
mov [RBP-32],RCX
cmp RCX,RDX
jae .rightbytesdone
mov AL,[RSI+RCX]
mov AH,[RDI+RCX]
mov R12W,AX
cmp AH,AL
je .printplain
inc R13
mov RDI,sbgred
call _print

.printplain:
xor RDI,RDI
mov AX,R12W
xor AH,AH
mov DI,AX
mov RSI,scratch
call _printh8bit
mov AX,R12W
cmp AH,AL
je .printdone
mov RDI,sresetstyle
call _print

.printdone:
mov RDI,1
mov RSI,sblank
call _nprint
mov RDI,[RBP-8]
mov RSI,[RBP-16]
mov RDX,[RBP-24]
mov RCX,[RBP-32]
inc RCX
jmp .nextbyteright

.rightbytesdone:
Uses _nprint 43b, _print 44a, _printh8bit 47b, sbgred 29a, sblank 29a, scratch 8c,

and sresetstyle 29a.

32

2.5 Read Array via Cache Access Time

Now we fill up the place up to 16 bytes on the right side.
⟨print-comparision16 29b⟩+≡ (36) ◁ 32

.rightemptybyte:
cmp RCX,0x10
jae .rightdone
inc RCX
jmp .rightemptybyte

.rightdone:
mov RDI,sresetstyle
call _print
mov RDI,1
mov RSI,slf
call _nprint
mov RAX,R13
pop R13
pop R12

⟨leavestackframe 41d⟩
ret

Uses _nprint 43b, _print 44a, slf 10d, and sresetstyle 29a.

Now that we can print 16 bytes in a line we simply divide the requested number of
bytes into 16 bytes chunks and output them.
First we set up the stack frame and save R12 to the stack to use it as scratch register.

Parameters
RDI the address of the first array

RSI the address of the second array

RDX number of bytes to print

Return
RAX number of bytes that differ between both memory areas
⟨print-comparision 33b⟩≡ (36) 34a ▷

_printcompare:
⟨enterstackframe 41c⟩

sub RSP,40
mov [RBP-8],RDI
mov [RBP-16],RSI
mov [RBP-24],RDX
push R12
xor R12,R12

Defines:
_printcompare, used in chunk 34c.

33

2 Cache Access Timing

So first we calculate how many 16 bytes chunks there are. For each chunk with 16 bytes
we will print out a line.

⟨print-comparision 33b⟩+≡ (36) ◁ 33b 34b ▷

shr RDX,4
mov [RBP-32],RDX
xor RCX,RCX

.nextline:
mov [RBP-40],RCX
cmp RCX,[RBP-32]
jae .linesdone
mov RAX,RCX
shl RAX,4
mov RDI,[RBP-8]
add RDI,RAX
mov RSI,[RBP-16]
add RSI,RAX
mov RDX,0x10
call _printcompare16
add R12,RAX
mov RCX,[RBP-40]
inc RCX
jmp .nextline

.linesdone:
Uses _printcompare16 29b.

⟨print-comparision 33b⟩+≡ (36) ◁ 34a
mov RAX,R12
pop R12

⟨leavestackframe 41d⟩
ret

Now we can print the complete memory compare.

⟨cacheread-program 26b⟩+≡ (36) ◁ 28f 35b ▷

mov RDI,data
mov RSI,readbackdata
mov RDX,pagesize
call _printcompare

Uses _printcompare 33b, data 8b, pagesize 5, and readbackdata 26a.

34

2.5 Read Array via Cache Access Time

Now we will print some statistics and then leave the program.

⟨cacheread-rodata 29a⟩+≡ (36) ◁ 29a
sstatistics: db "Failed read relation: ",0x00
sper: db "/"

Defines:
sper, used in chunk 35b.
sstatistics, used in chunk 35b.

⟨cacheread-program 26b⟩+≡ (36) ◁ 34c
push RAX
mov RDI,sstatistics
call _print
pop RDI
mov RSI,scratch
call _printdu64bit
mov RDI,1
mov RSI,sper
call _nprint
mov RDI,pagesize
mov RSI,scratch
call _printdu64bit
mov RDI,1
mov RSI,slf
call _nprint

⟨exitProgram 41b⟩
Uses _nprint 43b, _print 44a, _printdu64bit 45a, pagesize 5, scratch 8c, slf 10d, sper 35a,

and sstatistics 35a.

35

2 Cache Access Timing

Now we can put all together and create the program cacheread.asmcacheread .

⟨cacheread.asm 36⟩≡
⟨preamble 5⟩

section .rodata
⟨common-rodata 10d⟩
⟨cacheread-rodata 29a⟩

section .bss
⟨data-udata 8b⟩
⟨probe-udata 13c⟩
⟨readback-udata 26a⟩
⟨timings-udata 16b⟩
⟨scratch-udata 8c⟩

section .text
⟨cacheread-program 26b⟩

⟨clearcache 13a⟩

⟨calculate-cache-access-time 8a⟩

⟨readcachetiming 15a⟩

⟨analyzecachemintiming 16a⟩

⟨readarea 27a⟩

⟨print-comparision 33b⟩

⟨print-comparision16 29b⟩

⟨xorshift-prng 42a⟩

⟨utilities 41a⟩

Now we have created a program that reads a complete memory area via the covert
channel. When executing the pogram an output like the following should occur. In the
example additionally time is used to get some timing in the end. We have approx. 13 %
errors while read (in the example), which we will accept at this point. This rate also
differs depending on the processor and the load of the computer. In the following output
the arrays are omitted.

$ time bin/cacheread

36

2.5 Read Array via Cache Access Time

[snip]
Failed read relation: 543/4096

real 0m16.653s
user 0m16.510s
sys 0m0.032s
$

37

3 Meltdown

3.1 Introduction
The Meltdown attack is a combination of a cache timing attack (see chapter 2) and
speculative execution (see section 1.4).
For Meltdown we try to read memory which is normally not accessible to us because

of the rights. Before KPTI was implemented in the linux kernel all kernel memory was
mapped into every user process but protected against access. Meltdown now reads the
memory by trying to access it. This leads to an exception in the processor because we
are not authorized to access this memory.

Because the processor speculatively executes instructions the instructions after the
violation are executed before the exception is signaled. So we load something from a
probe array depending on the read kernel memory and determine the cache access times
afterwards to determine the original value (as seen in section 2.5).

This only works if the signaling of the exception takes longer than the access to the
probe array.
Exceptions in linux are signaled by signals therefore we first look at signals and how

we can handle them in assembly.

3.2 Signals
3.2.1 Detecting Signals
TBD

3.2.2 Handling Signals
TBD

39

4 Utilities

4.1 Introduction
TBD

⟨utilities 41a⟩≡ (12 19 22a 25 36)
⟨nprint 43b⟩

⟨print 44a⟩

⟨printdu64bit 45a⟩

⟨printh8bit 47b⟩

4.2 Common Chunks
4.2.1 Exit Program
This chunk ends the program with exit code 0.

⟨exitProgram 41b⟩≡ (11e 18c 24b 35b)
xor RDI,RDI
mov RAX,60
syscall

4.2.2 Stack Frame
A chunk to create a stack frame.

⟨enterstackframe 41c⟩≡ (15a 27b 30a 33b)
push RBP
mov RBP,RSP

A chunk to clean up the created stack frame.

⟨leavestackframe 41d⟩≡ (15d 28e 33a 34b)
mov RSP,RBP
pop RBP

41

4 Utilities

4.3 Random Number Generator
To initialize the data a random number generator (RNG) is used. The sample programs
use xorshift1 as RNG.
First we clear the direction flag to ensure that we are incrementing the data pointer

RDI.
Next we move the number of values to be generated to RCX (which is a counter in x86

processors) and divide it by 4 (because we use a 32bit RNG). Additionally we move the
seed to EAX.

Parameters

RDI the address of the memory which is to be filled with random numbers

RSI the number of bytes that are filled with random numbers. This must be a
multiple of 4

EDX the seed of the RNG

⟨xorshift-prng 42a⟩≡ (12 19 22a 25 36) 42b ▷

_xorshift:
cld
mov RCX,RSI
shr RCX,2
mov EAX,EDX

Defines:
_xorshift, used in chunks 9e and 14a.

Now we can generate the next 32bit random number.

⟨xorshift-prng 42a⟩+≡ (12 19 22a 25 36) ◁ 42a 43a ▷
.next_random:

mov EBX,EAX
shl EAX,13
xor EAX,EBX
mov EBX,EAX
shr EAX,17
xor EAX,EBX
mov EBX,EAX
shl EAX,5
xor EAX,EBX

1https://en.wikipedia.org/wiki/Xorshift

42

https://en.wikipedia.org/wiki/Xorshift

4.4 Printing Strings

Because we want to generate multiple random numbers we store the value of EAX to
[RDI] and loop for the next random number.

⟨xorshift-prng 42a⟩+≡ (12 19 22a 25 36) ◁ 42b
stosd
loop .next_random
ret

4.4 Printing Strings
4.4.1 Printing Strings with Length
The routine _nprint prints a string with the given length to stdout.
We move the number of bytes to print to RDX which is the 3rd parameter to the

systemcall. Next we move the address of the bytes to print to RSI which is the 2nd
parameter to the systemcall. The 1st argument (in RDI) to the systemcall is the file
descriptor (1 is stdout). Additionally the number of the systemcall (1) is passed in RAX.
The systemcall (syscall) now prints RDX bytes from [RSI] to the file descriptor RDI.
At the end we return to the caller.

Parameters

RDI the number of bytes to print to stdout

RSI the address to the bytes to print to stdout

⟨nprint 43b⟩≡ (41a)
_nprint:

mov RDX,RDI
mov RDI,1
mov RAX,1
syscall
ret

Defines:
_nprint, used in chunks 11, 17, 18, 24b, 30b, 32, 33a, 35b, 44d, 47a, and 48a.

4.4.2 Printing C-Strings
The routine _print prints a null-terminated string to stdout.
First we clear the direction flag to increment the address in RDI while scanning the

data.
Next we start with clearing AL (setting it to null) and saving the address of the string

to RSI. We’re using RSI because we later need the address to calculate the length of the
string.

43

4 Utilities

Parameters

RDI the address to the null-terminated bytes to print to stdout

⟨print 44a⟩≡ (41a) 44b ▷

_print:
cld
xor AL,AL
mov RSI,RDI

Defines:
_print, used in chunks 10e, 11d, 17, 18, 24b, 31–33, and 35b.

Next we search for the terminating null (’\0’) character. For this we use the instruc-
tion scasb (scan string byte) which compares the byte at the address [RDI] with the
value in AL and sets the flags accordingly. When the byte at [RDI] is not the value of
AL the next instruction (jne) jumps to the given label (.next_char in this case).

scasb additionally increments RDI so that we go through the string until ’\0’ is found.

⟨print 44a⟩+≡ (41a) ◁ 44a 44c ▷
.next_char:

scasb
jne .next_char

After we have found the string termination we calculate the number of bytes that the
string has. In RSI we now have the starting address of the bytes to print and in RDI we
have the end address of the bytes to print. After that we calculate the number of bytes
to print.

⟨print 44a⟩+≡ (41a) ◁ 44b 44d ▷

sub RDI,RSI

Now we have the address of the string in RDI and the length of the string in RSI which
are the 1st and 2nd argument in the call of _nprint.

⟨print 44a⟩+≡ (41a) ◁ 44c
call _nprint
ret

Uses _nprint 43b.

4.5 Printing Numbers
4.5.1 Printing a Decimal 64bit Unsigned Integer
The routine _printdu64bit prints a given 64bit integer as unsigned decimal number to
stdout.
To print a decimal number we have to divide the number by 10 and get the remainder

for printing (from right to left). For this we move the divisor to a register and the

44

4.5 Printing Numbers

dividend to RAX. We have to use RAX because this is the only register we can use for
division.
Additionally we need the address of the scratch area in RDI for storing the result. We

also save the address of the scratch area to R8 for later use.
To increment the address during the processing we clear the direction flag.

Parameters

RDI the number number to print to stdout

RSI the address of a scratch area with a size of at least 20 bytes

⟨printdu64bit 45a⟩≡ (41a) 45b ▷

_printdu64bit:
mov RAX,RDI
mov RDI,RSI
mov R8,RDI
mov RCX,10
cld

Defines:
_printdu64bit, used in chunks 10f, 11d, 18a, and 35b.

Now we define a label to jump back when we see that there are still more digits to
print. Then we test RAX for 0 and end the processing of the digits.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 45a 45c ▷
.next:

cmp RAX,0
je .done

Next we divide RAX by RCX. For this we have to clear RDX because this is the higher
value of the dividend. The result is then placed into RAX and the remainder into RDX.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 45b 45d ▷

xor RDX,RDX
div RCX

We now exchange the result and the remainder because we now need the remainder
in RAX (or AL) for further processing. Now we can add the ASCII character ’0’ to AL
and have the correct ASCII value in AL. Now we can store the ASCII character to the
scratch area.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 45c 46a ▷
xchg RDX,RAX
add AL,'0'
stosb

45

4 Utilities

Now we restore RAX (which we saved to RDX) to go into the next round.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 45d 46b ▷

mov RAX,RDX
jmp .next

Now that we have all the numbers as ASCII characters we are nearly done. We now
have to reverse the number in memory because the number saved at the lowest address
is the digit with the least significance.
We now start with checking if we have written any character. If not then we write the

ASCII character ’0’ into the memory. We use the instruction stosb for this to adjust
the address in RDI at the same time.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 46a 46c ▷
.done:

cmp RDI,RSI
jne .printout
mov AL,'0'
stosb

.printout:

Next we calculate the number of digits that the number has. For this we move the
address of the last digit to RDX and subtract the start of the scratch area from this. Next
we adjust RDI because it points to the first address after the number.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 46b 46d ▷

mov RDX,RDI
sub RDX,RSI
dec RDI

We now have RSI with the address of the start of the number and RDI with the address
of the end. We now have to exchange the digits from the front and the end to get the
right number. For this we increment RSI and decrement RDI after each exchange and
when the addresses pass each other we are done.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 46c 47a ▷
.reverse:

mov AL,[RSI]
mov AH,[RDI]
mov [RSI],AH
mov [RDI],AL
dec RDI
inc RSI
cmp RSI,RDI
jb .reverse

46

4.5 Printing Numbers

Now we restore the address of the scratch area to RSI and move the number of digits
(which we stored in RDX) to RDI and can the call _nprint to print the number.

⟨printdu64bit 45a⟩+≡ (41a) ◁ 46d
mov RSI,R8
mov RDI,RDX
call _nprint
ret

Uses _nprint 43b.

4.5.2 Printing a Hexadecimal 8bit Integer
The routine _printh8bit prints a given 8bit integer as hexadecimal number to stdout.
To print a hexadecimal number we mask a nibble (4bit) and have the number to print.
First we clear the register RAX and move the number to AX for further processing and

clear the higher 8bit (AH). Additionally we move it to R8 for later restore.
Additionally we need the address of the scratch area in RDI for storing the result.
To increment the address during the processing we clear the direction flag.

Parameters

DI the number number to print to stdout. Only the lower 8bit are used.

RSI the address of a scratch area with a size of at least 2 bytes

⟨printh8bit 47b⟩≡ (41a) 47c ▷
_printh8bit:

xor RAX,RAX
mov AX,DI
xor AH,AH
mov R8,RAX
mov RDI,RSI
cld

Defines:
_printh8bit, used in chunks 17d, 18b, 24b, 30b, and 32.

Now we mask the higher 4 bit of AL by shifting it 4 bits to the right and mask out all
but the lower 4 bit. Next we call the internal method printh8bit.printh4bit to print
out this nibble.

⟨printh8bit 47b⟩+≡ (41a) ◁ 47b 48a ▷
shr AL,4
and AL,0x0f
call .printh4bit

47

4 Utilities

Next we restore the number and print out the lower 4 bits.
⟨printh8bit 47b⟩+≡ (41a) ◁ 47c

mov RAX,R8
and AL,0x0f
call .printh4bit
mov RDI,2
call _nprint
ret

⟨printh8bit.printh4bit 48b⟩
Uses _nprint 43b.

Now we define the internal method to print a hexadecimal digit.
First we test if the digit is above or equal to 10. In this case we have to print out a

character between 'a' and 'f' else we print out a decimal digit (between '0' and '9').

Parameters (internal)

AL the lower 4 bit contain the hexadecimal digit print to stdout

RDI the address of a scratch area

⟨printh8bit.printh4bit 48b⟩≡ (48a) 48c ▷
.printh4bit:

cmp AL,10
jae .printa2f

Defines:
printh8bit.printh4bit, never used.

Now we add '0' to get the code for the digit between '0' and '9'.
⟨printh8bit.printh4bit 48b⟩+≡ (48a) ◁ 48b 48d ▷

add AL,'0'
jmp .printout

Else we print a digit between 'a' and 'f'. We first subtract 10 because the value in
AL is now between 10 and 15.
⟨printh8bit.printh4bit 48b⟩+≡ (48a) ◁ 48c 48e ▷

.printa2f:
sub AL,10
add AL,'a'

Now we store the character into the storage area.
⟨printh8bit.printh4bit 48b⟩+≡ (48a) ◁ 48d

.printout:
stosb
ret

48

A Index
cacheread (program), 36
cachereadbyte (program), 19
cachereadbyte2 (program), 22
cachereadbyte3 (program), 25
cachetiming (program), 12
clflush, 10

lfence, 7, 10

rdtsc, 7, 9

49

B Glossary
KPTI Kernel Page Table Isolation, a mitigation against Meltdown 39

x86 a microprocessor architecture based on the 8086/8088 42

51

C Acronyms
ASCII American Standard Code for Information Interchange 45, 46

LF line feed 10, 11, 17

RNG random number generator 42

53

D x86-Instructions
clflush Flush Cache Line, introduced with Intel® Pentium® 4 10

lfence Load Fence, introduced with Intel® Pentium® 4 7, 10

rdtsc Read Time Stamp Counter, introduced with Intel® Pentium® 7, 9

55

E Code Chunks

⟨analyzecachemintiming 16a⟩
⟨analyzecachesimpthrestiming 20a⟩
⟨cacheread-program 26b⟩
⟨cacheread-rodata 29a⟩
⟨cacheread.asm 36⟩
⟨cachereadbyte-program 13b⟩
⟨cachereadbyte-rodata 17b⟩
⟨cachereadbyte.asm 19⟩
⟨cachereadbyte2.asm 22a⟩
⟨cachereadbyte3-program 22b⟩
⟨cachereadbyte3.asm 25⟩
⟨cachetiming-program 9a⟩
⟨cachetiming-rodata 10c⟩
⟨cachetiming.asm 12⟩
⟨calculate-cache-access-time 8a⟩
⟨clearcache 13a⟩
⟨common-rodata 10d⟩
⟨data-udata 8b⟩
⟨enterstackframe 41c⟩
⟨exitProgram 41b⟩
⟨init-random-data 9b⟩
⟨init-random-probe 14a⟩
⟨leavestackframe 41d⟩
⟨license 82⟩
⟨nprint 43b⟩
⟨preamble 5⟩
⟨print 44a⟩
⟨print-comparision 33b⟩
⟨print-comparision16 29b⟩
⟨printdu64bit 45a⟩
⟨printh8bit 47b⟩
⟨printh8bit.printh4bit 48b⟩
⟨probe-udata 13c⟩
⟨readarea 27a⟩
⟨readback-udata 26a⟩
⟨readbyte2cache 23a⟩
⟨readcachetiming 15a⟩

57

E Code Chunks

⟨scratch-udata 8c⟩
⟨timings-udata 16b⟩
⟨tsc-64bit 7⟩
⟨utilities 41a⟩
⟨xorshift-prng 42a⟩

58

F License

F.1 GNU Free Documentation License
This license applies to this documentation as a whole.

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a

59

F License

world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain

60

F.1 GNU Free Documentation License

ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

61

F License

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

62

F.1 GNU Free Documentation License

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

63

F License

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",

64

F.1 GNU Free Documentation License

and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the

65

F License

Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number.

66

F.1 GNU Free Documentation License

If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document

67

F License

under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

F.2 Code License
F.2.1 GNU GENERAL PUBLIC LICENSE
This license applies to all program code generated from this document.

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

68

F.2 Code License

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

69

F License

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that

70

F.2 Code License

is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do

71

F License

not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section

72

F.2 Code License

7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

73

F License

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

74

F.2 Code License

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the

75

F License

terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

76

F.2 Code License

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

77

F License

rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

78

F.2 Code License

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

79

F License

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

80

F.2 Code License

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

81

F License

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

F.2.2 Code Chunk of GPL
This is a code chunk to be included by the generated asm files.

⟨license 82⟩≡ (5)
; Meltdown and Spectre - Samples Written in Assembly
; Copyright (C) 2018 U. Plonus
;
; This program is free software: you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program. If not, see <http://www.gnu.org/licenses/>.

82

	Introduction
	Overview
	Conventions
	Introduction
	Data Sections

	Nasm
	Speculative Execution

	Cache Access Timing
	Introduction
	Detect Cache Access Time
	High Resolution Timer
	Cache Access Time Routine

	Measure Cache Access Time
	Setup
	Measure Time

	Read Byte via Cache Access Time
	Introduction
	Clear Cache for Measurement
	Indexed Array Access
	Read a Byte from the Cache
	The Whole Program to Read a Byte from Cache
	Improve Cache Access Time Analysis

	Read Array via Cache Access Time
	Introduction
	Setup

	Meltdown
	Introduction
	Signals
	Detecting Signals
	Handling Signals

	Utilities
	Introduction
	Common Chunks
	Exit Program
	Stack Frame

	Random Number Generator
	Printing Strings
	Printing Strings with Length
	Printing C-Strings

	Printing Numbers
	Printing a Decimal 64bit Unsigned Integer
	Printing a Hexadecimal 8bit Integer

	Index
	Glossary
	Acronyms
	x86-Instructions
	Code Chunks
	License
	GNU Free Documentation License
	Code License
	GNU GENERAL PUBLIC LICENSE
	Code Chunk of GPL

